
Security Assessment

Dog Moon
May 24th, 2021

Table of Contents
Summary

Overview
Project Summary

Audit Summary

Vulnerability Summary

Audit Scope

Findings
CTC-01 : Lack of Input Validation

CTC-02 : Incorrect error message

CTC-03 : Redundant code

CTC-04 : Centralized risk in `addLiquidity`

CTC-05 : Return value not handled

CTC-06 : 3rd party dependencies

CTC-07 : Missing event emitting

CTC-08 : Privileged ownership

CTC-09 : Typos in the contract

CTC-10 : The purpose of function `deliver`

CTC-11 : Possible to gain ownership after renouncing the contract ownership

Formal Verification Requests

Appendix

Disclaimer

About

Dog Moon Security Assessment

Summary
This report has been prepared for Dog Moon smart contracts, to discover issues and vulnerabilities in the

source code of their Smart Contract as well as any contract dependencies that were not part of an officially

recognized library. A comprehensive examination has been performed, utilizing Manual Review and Static

Analysis techniques.

The auditing process pays special attention to the following considerations:

Testing the smart contracts against both common and uncommon attack vectors.

Assessing the codebase to ensure compliance with current best practices and industry standards.

Ensuring contract logic meets the specifications and intentions of the client.

Cross referencing contract structure and implementation against similar smart contracts produced

by industry leaders.

Thorough line-by-line manual review of the entire codebase by industry experts.

The security assessment resulted in findings that ranged from critical to informational. We recommend

addressing these findings to ensure a high level of security standards and industry practices. We suggest

recommendations that could better serve the project from the security perspective:

Enhance general coding practices for better structures of source codes;

Add enough unit tests to cover the possible use cases given they are currently missing in the

repository;

Provide more comments per each function for readability, especially contracts are verified in public;

Provide more transparency on privileged activities once the protocol is live.

Dog Moon Security Assessment

Overview

Project Summary

Project Name Dog Moon

Platform Heco Chain

Language Solidity

Codebase https://hecoinfo.com/address/0x67bab912ee30074cf9a94826e2e02d9936842781#code

Commits Address of deployed contract: 0x67bab912ee30074cf9a94826e2e02d9936842781

Audit Summary

Delivery Date May 24, 2021

Audit Methodology Manual Review, Static Analysis

Key Components

Vulnerability Summary

Total Issues 11

Critical 0

Major 1

Medium 0

Minor 4

Informational 6

Discussion 0

Dog Moon Security Assessment

https://hecoinfo.com/address/0x67bab912ee30074cf9a94826e2e02d9936842781#code

Audit Scope

ID file SHA256 Checksum

CTC CoinToken.sol 9505e1ec73f855bd1f18c0c6484625eddbbc56723c3f786dabdf0236b3702bfc

Dog Moon Security Assessment

Findings

ID Title Category Severity Status

CTC-01 Lack of Input Validation Volatile Code Informational Acknowledged

CTC-02 Incorrect error message Logical Issue Minor Acknowledged

CTC-03 Redundant code Logical Issue Informational Acknowledged

CTC-04 Centralized risk in addLiquidity
Centralization /
Privilege

Major Resolved

CTC-05 Return value not handled Volatile Code Informational Acknowledged

CTC-06 3rd party dependencies Control Flow Minor Acknowledged

CTC-07 Missing event emitting Coding Style Informational Acknowledged

CTC-08 Privileged ownership
Centralization /
Privilege

Minor Acknowledged

CTC-09 Typos in the contract Coding Style Informational Acknowledged

CTC-10 The purpose of function deliver Control Flow Informational Acknowledged

CTC-11
Possible to gain ownership after
renouncing the contract ownership

Logical Issue,
Centralization /
Privilege

Minor Resolved

Dog Moon Security Assessment

11
Total Issues

Critical 0 (0.00%)

Major 1 (9.09%)

Medium 0 (0.00%)

Minor 4 (36.36%)

Informational 6 (54.55%)

Discussion 0 (0.00%)

CTC-01 | Lack of Input Validation

Category Severity Location Status

Volatile Code Informational CoinToken.sol: 742~744 Acknowledged

Description

The input parameters routerAddress and tokenOwner of the constructor of contract CoinToken should be

verified as a non-zero address.

Alleviation

No alleviation.

Dog Moon Security Assessment

CTC-02 | Incorrect error message

Category Severity Location Status

Logical Issue Minor CoinToken.sol: 857 Acknowledged

Description

The error message in require(_isExcluded[account], "Account is already excluded") does not describe

the error correctly.

Recommendation

The message "Account is already excluded" can be changed to "Account is not excluded" .

Alleviation

No alleviation.

Dog Moon Security Assessment

CTC-03 | Redundant code

Category Severity Location Status

Logical Issue Informational CoinToken.sol: 1118 Acknowledged

Description

The condition !_isExcluded[sender] && !_isExcluded[recipient] can be included in else .

Recommendation

The following code can be removed:

11 elseelse ifif ((!!_isExcluded_isExcluded[[sendersender]] &&&& !!_isExcluded_isExcluded[[recipientrecipient]])) {{
22 _transferStandard_transferStandard((sendersender,, recipient recipient,, amount amount));;
33 }}

Alleviation

No alleviation.

Dog Moon Security Assessment

CTC-04 | Centralized risk in addLiquidity

Category Severity Location Status

Centralization / Privilege Major CoinToken.sol: 1093 Resolved

Description

11 // add the liquidity// add the liquidity
22 uniswapV2RouteruniswapV2Router..addLiquidityETHaddLiquidityETH{{valuevalue:: ethAmount ethAmount}}((
33 addressaddress((thisthis)),,
44 tokenAmount tokenAmount,,
55 00,, // slippage is unavoidable// slippage is unavoidable
66 00,, // slippage is unavoidable// slippage is unavoidable
77 ownerowner(()),,
88 block block..timestamptimestamp
99));;

The addLiquidity function calls the uniswapV2Router.addLiquidityETH function with the to address

specified as owner() for acquiring the generated LP tokens from the DogMoon-HT pool. As a result, over

time the _owner address will accumulate a significant portion of LP tokens.If the _owner is an EOA

(Externally Owned Account), mishandling of its private key can have devastating consequences to the

project as a whole.

Recommendation

We advise the to address of the uniswapV2Router.addLiquidityETH function call to be replaced by the

contract itself, i.e. address(this) , and to restrict the management of the LP tokens within the scope of the

contract’s business logic. This will also protect the LP tokens from being stolen if the _owner account is

compromised. In general, we strongly recommend centralized privileges or roles in the protocol to be

improved via a decentralized mechanism or via smart-contract based accounts with enhanced security

practices, f.e. Multisignature wallets.

Indicatively, here are some feasible solutions that would also mitigate the potential risk:

Time-lock with reasonable latency, i.e. 48 hours, for awareness on privileged operations;

Assignment of privileged roles to multi-signature wallets to prevent single point of failure due to the

private key;

Introduction of a DAO / governance / voting module to increase transparency and user involvement.

Alleviation

Dog Moon Security Assessment

The development team confirmed that the owner is a black hole and all the liquidity are locked to the black

hole.

Dog Moon Security Assessment

CTC-05 | Return value not handled

Category Severity Location Status

Volatile Code Informational CoinToken.sol: 1098 Acknowledged

Description

The return values of function addLiquidityETH are not properly handled.

11 uniswapV2Router uniswapV2Router..addLiquidityETHaddLiquidityETH{{valuevalue:: ethAmount ethAmount}}((
22 addressaddress((thisthis)),,
33 tokenAmount tokenAmount,,
44 00,, // slippage is unavoidable// slippage is unavoidable
55 00,, // slippage is unavoidable// slippage is unavoidable
66 ownerowner(()),,
77 block block..timestamptimestamp
88));;

Recommendation

We recommend using variables to receive the return value of the functions mentioned above and handle

both success and failure cases if needed by the business logic.

Alleviation

No alleviation.

Dog Moon Security Assessment

CTC-06 | 3rd party dependencies

Category Severity Location Status

Control Flow Minor CoinToken.sol: 744~747 Acknowledged

Description

The contract is serving as the underlying entity to interact with third party protocols. The scope of the audit

would treat those 3rd party entities as black boxes and assume its functional correctness. However in the

real world, 3rd parties may be compromised that led to assets lost or stolen.

Recommendation

We understand that the business logic of the DogMoon protocol requires the interaction 3rd party protocol

for adding liquidity to DogMoon-HT pool and swap tokens. We encourage the team to constantly monitor

the statuses of those 3rd parties to mitigate the side effects when unexpected activities are observed.

Alleviation

No alleviation.

Dog Moon Security Assessment

CTC-07 | Missing event emitting

Category Severity Location Status

Coding Style Informational CoinToken.sol: 677 Acknowledged

Description

In contract DogMoon , there are a bunch of functions can change state variables. However, these function do

not emit event to pass the changes out of chain.

Recommendation

Recommend emitting events, for all the essential state variables that are possible to be changed during

runtime.

Alleviation

No alleviation.

Dog Moon Security Assessment

CTC-08 | Privileged ownership

Category Severity Location Status

Centralization / Privilege Minor CoinToken.sol: 447~460 Acknowledged

Description

The owner of contract DogMoon has the permission to:

1. change the address that can receive LP tokens,

2. lock the contract,

3. exclude/include addresses from rewards/fees,

4. set taxFee , liquidityFee and _maxTxAmount ,

5. enable swapAndLiquifyEnabled

without obtaining the consensus of the community.

Recommendation

Renounce ownership when it is the right timing, or gradually migrate to a timelock plus multisig governing

procedure and let the community monitor in respect of transparency considerations.

Alleviation

No alleviation.

Dog Moon Security Assessment

CTC-09 | Typos in the contract

Category Severity Location Status

Coding Style Informational CoinToken.sol: 719 Acknowledged

Description

There are several typos in the code and comments.

1. In the following code snippet, tokensIntoLiqudity should be tokensIntoLiquidity .

11 eventevent SwapAndLiquifySwapAndLiquify((
22 uint256uint256 tokensSwapped tokensSwapped,,
33 uint256uint256 ethReceived ethReceived,,
44 uint256uint256 tokensIntoLiqudity tokensIntoLiqudity
55));;

2. recieve should be receive and swaping should be swapping in the line of comment //to recieve

ETH from uniswapV2Router when swaping .

Recommendation

We recommend correcting all typos in the contract.

Alleviation

No alleviation.

Dog Moon Security Assessment

CTC-10 | The purpose of function deliver

Category Severity Location Status

Control Flow Informational CoinToken.sol: 820~827 Acknowledged

Description

The function deliver can be called by anyone. It accepts an uint256 number parameter tAmount . The

function reduces the DogMoon token balance of the caller by rAmount , which is tAmount reduces the

transaction fee. Then, the function adds tAmount to variable _tFeeTotal , which represents the contract's

total transaction fee. We wish the team could explain more on the purpose of having such functionality.

Alleviation

No alleviation.

Dog Moon Security Assessment

CTC-11 | Possible to gain ownership after renouncing the contract

ownership

Category Severity Location Status

Logical Issue, Centralization / Privilege Minor CoinToken.sol: 447~460 Resolved

Description

An owner is possible to gain ownership of the contract even if he calls function renounceOwnership to

renounce the ownership. This can be achieved by performing the following operations:

1. Call lock to lock the contract. The variable _previousOwner is set to the current owner.

2. Call unlock to unlock the contract.

3. Call renounceOwnership to leave the contract without an owner.

4. Call unlock to regain ownership.

Recommendation

We advise updating/removing lock and unlock functions in the contract; or removing the

renounceOwnership if such a privilege retains at the protocol level. If timelock functionality could be

introduced, we recommend using the implementation of Compound finance as reference. Reference:

https://github.com/compound-finance/compound-protocol/blob/master/contracts/Timelock.sol

Alleviation

The owner is transferred to the black hole.

Dog Moon Security Assessment

https://github.com/compound-finance/compound-protocol/blob/master/contracts/Timelock.sol

Appendix

Finding Categories

Centralization / Privilege

Centralization / Privilege findings refer to either feature logic or implementation of components that act

against the nature of decentralization, such as explicit ownership or specialized access roles in

combination with a mechanism to relocate funds.

Logical Issue

Logical Issue findings detail a fault in the logic of the linked code, such as an incorrect notion on how

block.timestamp works.

Control Flow

Control Flow findings concern the access control imposed on functions, such as owner-only functions

being invoke-able by anyone under certain circumstances.

Volatile Code

Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases that may

result in a vulnerability.

Coding Style

Coding Style findings usually do not affect the generated byte-code but rather comment on how to make

the codebase more legible and, as a result, easily maintainable.

Checksum Calculation Method

The "Checksum" field in the "Audit Scope" section is calculated as the SHA-256 (Secure Hash Algorithm 2

with digest size of 256 bits) digest of the content of each file hosted in the listed source repository under

the specified commit.

The result is hexadecimal encoded and is the same as the output of the Linux "sha256sum" command

against the target file.

Dog Moon Security Assessment

Disclaimer
This report is subject to the terms and conditions (including without limitation, description of services,

confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of

services, and terms and conditions provided to the Company in connection with the Agreement. This

report provided in connection with the Services set forth in the Agreement shall be used by the Company

only to the extent permitted under the terms and conditions set forth in the Agreement. This report may not

be transmitted, disclosed, referred to or relied upon by any person for any purposes without CertiK’s prior

written consent.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or

team. This report is not, nor should be considered, an indication of the economics or value of any

“product” or “asset” created by any team or project that contracts CertiK to perform a security

assessment. This report does not provide any warranty or guarantee regarding the absolute bug-free

nature of the technology analyzed, nor do they provide any indication of the technologies proprietors,

business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with any

particular project. This report in no way provides investment advice, nor should be leveraged as investment

advice of any sort. This report represents an extensive assessing process intending to help our customers

increase the quality of their code while reducing the high level of risk presented by cryptographic tokens

and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is

that each company and individual are responsible for their own due diligence and continuous security.

CertiK’s goal is to help reduce the attack vectors and the high level of variance associated with utilizing

new and consistently changing technologies, and in no way claims any guarantee of security or

functionality of the technology we agree to analyze.

Dog Moon Security Assessment

About
Founded in 2017 by leading academics in the field of Computer Science from both Yale and Columbia

University, CertiK is a leading blockchain security company that serves to verify the security and

correctness of smart contracts and blockchain-based protocols. Through the utilization of our world-class

technical expertise, alongside our proprietary, innovative tech, we’re able to support the success of our

clients with best-in-class security, all whilst realizing our overarching vision; provable trust for all

throughout all facets of blockchain.

Dog Moon Security Assessment

